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Executive Summary 
This paper has two objectives:  

1. Review the available literature on Climate-Related Financial Stability Risks (CRFSRs) as it 
pertains to the United States. Specifically, the literature review considers several modeling 
approaches and aims to 

1.1 Identify financial market vulnerabilities (e.g., bank leverage),  
1.2 Provide an assessment of those vulnerabilities (high/medium/low) as identified by 

the current literature, and 
1.3 Evaluate the uncertainty surrounding these assessments based on interpretation of 

the findings and coverage of existing literature (high/low). 
2. Identify methodologies to link climate risks to financial stability and possible research paths 

to assess U.S. CRFSRs. 

The paper is structured in three parts. First, it characterizes the potential financial system 
vulnerabilities of climate change. Second, it describes the major methodologies adopted in 
studying the implications of climate change and provides an assessment of financial system 
vulnerabilities identified by the current literature. Third, it discusses how different methodologies 
can be further developed or combined to assess U.S. CRFSRs. 

The paper contains four key findings: 

First, modelling and assessing CRFSRs present several challenges, and no single methodology can 
address all of them: (1) accounting for uncertainty, (2) adapting to long time horizons, (3) 
embedding heterogeneity, (4) incorporating technological change, and (5) modeling damage 
functions to measure the economic impacts of climate change. The paper highlights the limitations 
of the methodologies considered and the need for further research (see Table 1). 

Second, the literature on U.S. CRFSRs is thin and identifies only a few U.S. financial system 
vulnerabilities (see Table 2).  

Third, currently available results should be interpreted with caution. The paper considers the 
number of studies available for the assessment, the modelling assumptions behind those studies, 
and the overall qualitative evaluation of the results, and concludes that any assessment based on 
the extant literature is characterized by a large degree of uncertainty (see Table 2). 

Fourth, no methodology can be used in isolation to fully assess U.S. CRFSRs; several 
methodologies need to be combined for a more complete understanding. For example, the reduced 
form outputs from micro- and macro-econometric statistical methods can be used to inform the 
main parameters and assumptions in computable general equilibrium and dynamic stochastic 
general equilibrium models, as well as the distributions of different random variables in agent-
based models. In turn, equilibrium models and agent-based models can be used to design scenarios 
that feed into scenario analysis, sensitivity analysis, stress testing, and other practitioner 
approaches (see Figure 2).  
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1. Introduction 
There has been increased interest in assessing the preparedness and resilience of the financial 
sector due to concerns about the economic impacts and financial risks associated with climate 
change. This paper specifically reviews the current literature on climate-related financial stability 
risks (CRFSRs):  risks that may result from climate change that could potentially impact the safety 
and soundness of the U.S. financial system. This literature is limited and there are many 
opportunities for theoretical and empirical advancements. We note that such work faces significant 
challenges. Many of the standard assumptions that underlie existing methodologies may not be 
well-suited to analyze the financial stability implications of climate change. Nonetheless, work in 
this area has begun, with some lines of inquiry analyzing these implications from a micro-level 
approach – for example, reviewing the value-at-risk of specific portfolios due to climate change 
effects – while others use a macro-level approach – for example, linking potential carbon emission 
pathways to productivity effects over decades. The literature review is organized around the 
different existing methodologies and focuses primarily on studies conducted for the U.S. financial 
sector. When applicable, we note opportunities to strengthen climate-related stability financial 
research. 

2. Climate-Related Risks and Financial System Vulnerabilities 
Climate-related risk is typically divided into “physical risk” (i.e., damages to facilities, operations, 
and assets caused by climate change-induced hazards and conditions) and “transition risk” (i.e., 
losses resulting from a transition of production and consumption towards methods and products 
that are compatible with a net-zero economy).2, 3 

Physical risk can be divided into two categories. “Chronic physical risk” is caused by steadily 
deteriorating conditions over time; examples include sea level rise and slow increases in mean 
temperatures. “Acute physical risk” is caused by damages from severe hazards, either due to an 
increase in the probability or severity of the event; examples include hurricanes, floods, and 
wildfires. Physical risk can affect asset values and credit availability, and force relocation of 
businesses and households with potential financial stability consequences.  

Transition risk is typically divided into three categories. “Policy risk” refers to the risk that policies 
associated with the transition to a lower- emissions economy may raise costs to some firms and 
households, induce shifts in the location and nature of economic activity, and impose restrictions 
that affect the viability or profitability of certain industries. “Technological risk” is the risk that 
certain assets may suffer a devaluation caused by climate change-induced innovation and become 
“stranded”.4 Finally, “preference risk” refers to risks arising from shifts in investor and consumer 
preferences away from carbon-intensive products toward greener ones. 

 
2 See Brunetti, Dennis, Gates, Hancock, Ignell, Kiser, Kotta, Kovner, Rosen and Tabor (2021). 
3 A third category, known as “litigation risks,” covers the potential for impacts from a wide variety of legal proceedings 
around climate, risks that are highly uncertain and challenging to analyze. 
4 According to Lloyds of London, “Stranded assets are defined as assets that have suffered from 
unanticipated or premature write-downs, devaluation or conversion to liabilities. In recent years, the issue 
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Figure 1: 
 

Possible Transmission from Climate-related Risks to Financial System Vulnerabilities 

 
As climate-related risks evolve, climate change-related features are likely to become more salient and 
amplify financial system vulnerabilities. These financial system vulnerabilities also have the potential to 
interact with climate change-related features and be further amplified through feedback loops, as shown 
by the blue curved arrows. 

 

Figure 1 depicts possible transmission channels from climate-related risks to financial system 
vulnerabilities.5 As these risks evolve, climate change-related features are likely to become more 
salient and possibly amplify financial system vulnerabilities. For example, climate-related risks 
may increase the correlation of shocks – and therefore the aggregate exposures of financial 
institutions – in ways that are challenging to model. In the context of physical risks, the 

 
of stranded assets caused by environmental factors, such as climate change and society’s attitudes towards 
it, has become increasingly high profile. Changes to the physical environment driven by climate change, 
and society’s response to these changes, could potentially strand entire regions and global industries within 
short timeframe, leading to direct and indirect impacts on investment strategies and liabilities.” See: 
https://www.lloyds.com/strandedassets 
Carbon Tracker defines stranded assets as those that “at some time prior to the end of their economic life 
are no longer able to earn an economic return, as a result of changes associated with the transition to a low-
carbon economy” and “turn out to be worth less than expected as a result of changes associated with the 
energy transition”. They discussed this concept in their 2011 “Unburnable Carbon” report. See: 
https://carbontracker.org/resources/terms-list/#unburnable-carbon  
5 This figure builds on previous work conducted by Brunetti et al. (2021) and relates to the financial stability 
monitoring framework described in the Federal Reserve’s Financial Stability Reports, see Board of 
Governors (2020). 
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simultaneous occurrence of hazards such as hugely damaging hurricanes, inland rain bombs, and 
wildfires across the continent may become more frequent than historical data would suggest and 
significantly impact financial institutions operating and holding assets in vulnerable locations. In 
the context of transition risk, the introduction of new technologies or policies will inevitably lead 
to creative destruction within and across firms. While the rise and fall of products or firms is a 
standard feature of the modern economy, transition risk is suggestive that the scope and rapidity 
of economic shifts could exceed the historical pace of change that the financial sector is 
accustomed to.6 In addition, even if macroeconomically the growth in green sectors offsets the 
decline in emissions-intensive sectors, negative effects may be concentrated by region and sector.  

Given that historical data may have limited relevance for predicting future climate states, financial 
institutions have little historical guidance on which to base projections, suggesting that existing 
risk management models and frameworks may leave them inadequately prepared for climate-
related risks. Nonlinear effects may further complicate efforts to mitigate and model climate-
related risks, as tipping points are difficult to predict.7 Additional challenges remain. First, many 
financial market participants may lack the ability or incentive to invest in better understanding 
their exposures, many of which are opaque.8 Second, some factors, such as the impact of emerging 
disruptive technologies, are intrinsically unpredictable. Third, institutional distortions and policy 
asymmetries may increase financial system vulnerabilities. For instance, studies by Ouazad and 
Kahn (2021) and Keenan and Bradt (2020) document how U.S. banks, benefitting from 
asymmetric information on climate-related risks, may have been able to shift risk to other entities 
(for example, the purchasers of mortgage securities). While this type of risk shifting, in addition 
to insurance, may protect certain entities from the impacts of climate-related risks in the short-
term, it may not be a sustainable mitigant and may inadvertently lead to a buildup of risks in other 
counterparties with potentially significant financial stability consequences.  

As with any shock, climate-related risk is absorbed by institutional “layers”, beginning with 
insurers, passing through households and non-financial firms, and ending with banks, pensions, 
securities holders, and ultimately the government. Financial stability requires that these loss-
absorbing layers continue to function reliably in the presence of climate shocks; this can be broadly 
termed a “flow-of-risk” analysis.9 Due to the climate change-related features shown in Figure 1, 
financial institutions may underestimate the magnitude of climate-related risks and increase (or 
fail to decrease) leverage where appropriate. If insurers, for instance, lever up, they may be unable 

 
6 The Glasgow Financial Alliance for Net Zero suggests that $32 trillion of global investment will be needed 
between 2021-2030. More information can be found here: https://www.gfanzero.com/netzerofinancing 
7 A 2018 Intergovernmental Panel on Climate Change special report defines tipping points in the global 
climate system as “large-scale singular events” and “critical thresholds that, when exceeded, can lead to a 
significant change in the state of the system, often with an understanding that the change is irreversible”. 
Examples of such tipping points could include loss of Arctic Sea ice and widespread permafrost thawing. 
These events can be difficult to predict due to the high degree of uncertainty surrounding the climate system 
itself. See: https://www.ipcc.ch/sr15/chapter/chapter-3/ 
8 See, e.g., Brunetti et al. (2021). 
9 The financial literature has sometimes characterized analysis of loss-absorption layers as analysis of the 
waterfall of losses. Waterfall analysis has historically been used to analyze liquidity risks to asset managers, 
see, e.g., Cetorelli, Duarte and Eisenbach (2016) and Bouveret (2017). 
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to provide coverage when correlated climate-related shocks occur, possibly limiting their ability 
to absorb losses. This may then affect banks’ abilities to lend if they held assets that were impacted 
by the shock.10 Due to the climate change-related features shown in Figure 1, it may be challenging 
for banks themselves to adequately account for funding disruptions. The disruption of loss 
absorption capacity, beginning with insurers and passing through to banks, has the potential to 
cause sudden changes in asset valuations and financial instability, and these effects could be 
especially acute if insurers decide to curtail policy coverage for climate-vulnerable assets.  

These financial system vulnerabilities also have the potential to interact with climate change-
related features and become amplified through feedback loops, as shown by the blue curved arrows 
in Figure 1. For example, high leverage may inadvertently provide too much funding to non-green 
institutions. In turn, continued emissions by those companies may further increase uncertainty 
about future climate pathways, since each additional ton of CO2 emitted into the atmosphere 
further warms the planet and alters the climate. The feedback loops shown in the figure also 
account for the possible interactions between the real economy and the financial sector. Residential 
real estate construction along the U.S. coast has been a fundamental driver of growth for many 
communities, but it also has increased the exposure of lenders, guarantors, and purchasers of 
securitized mortgages to physical risk. Should banks and other mortgage providers curb lending 
for home construction in these areas, the impact on local economic growth, employment, and tax 
revenue could be severe. These decreases would in turn imperil the ability of local households and 
firms to repay existing (non-mortgage) debts, a clear instance of heightened credit risk. In turn, if 
banks’ abilities to lend to households and businesses are curtailed, there may be reduced economic 
activity and associated financial stability implications.  

More generally, the features illustrated in Figure 1 can be expressed as direct and indirect effects. 
Direct effects are captured as the flow of losses through the financial system. Indirect effects are 
captured as changes in liquidity, demand for credit, and other spillovers. Batten, Sowerbutts and 
Tanaka (2016) itemize indirect effects, including inter alia: (i) increased uncertainty for investors 
and loss of market confidence, (ii) damage to banking and payment service facilities (in the case 
of acute physical risk), (iii) a reduction in insurance in affected areas, (iv) reputational risks, (v) 
limited financial resources available for reconstruction from physical damage due to weakening of 
household & corporate balance sheets and fall in output in affected area (in the case of acute 
physical risk), (vi) a decrease in collateral values, (vii) asset fire sales leading to decreases in asset 
prices, (viii) and a reduction of lending in unaffected areas/sectors as well as affected areas/sectors 
due to bank losses in affected areas/sectors. 

While climate-related risks have not yet led to financial instability – in which large scale losses 
reverberate through the financial system and impair financial institutions or the functioning of key 
liquidity or credit markets – the consequences of possible interactions and feedback loops between 
financial system vulnerabilities and climate change-related features highlight the need for further 
analysis. Specifically, increased monitoring of vulnerabilities, improved modelling techniques, 

 
10 In this example, banks would rely on insurers to backstop losses associated with the climate shock. As 
another example of a financial stability vulnerability, unforeseen counterparty or market risk could emerge 
if all participants pursue identical risk mitigation strategies, such as insurance.  
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appropriate disclosure, and well-designed transition policies are important for maintaining 
financial stability.  

3. Candidate Methodologies  
The assessment of CRFSRs may follow processes similar to those used for managing any 
significant risk; however, CRFSRs have unique properties that challenge traditional risk 
approaches. While estimation of CRFSRs has been, and continues to be, extensively discussed, 
work is still in its early stages and there is no consensus on preferred modelling approaches. 

Modelling and assessing CRFSRs present several challenges relating to: (1) uncertainty, (2) long 
time horizons, (3) heterogeneity, (4) technological change, and (5) damage functions for measuring 
the economic impact of climate change.11 

Uncertainty in measuring CRFSRs may significantly undermine the validity of risk estimates. 
The climate system is a complex structure composed by five major components (and the 
interactions between them): the atmosphere, the oceans, the cryosphere (snow and ice), the land 
surface, the biosphere, and the interactions between them. There is a large degree of uncertainty 
about the magnitude and feedback mechanisms of the climate system, as well as how the system 
affects and interacts with economic and financial variables. All modeling approaches are based on 
strong assumptions about the future behavior of economic agents, the future of technological 
innovation, future emissions pathways, the impact of emissions on climate, and the economic and 
financial consequences of climate change. Moreover, non-linearities related to climate tipping 
points and the interconnectedness of natural, financial, and economic systems are additional 
sources of model uncertainty that will inevitably affect the validity of risk estimates.  

The long time horizon surrounding CRFSRs further challenges estimating risks. Traditional 
methodologies usually forecast risks within a 5-year horizon, at most. This is not sufficient for 
fully estimating CRFSRs, as impacts are expected to manifest over longer time horizons. As a 
result, estimating CRFSRs requires additional assumptions about the evolution of balance sheets, 
physical systems, and discount factors. 

Heterogeneities in financial markets and institutions’ exposures also complicate climate-related 
risk modeling. Heterogeneity refers to the differences in portfolio composition of market 
participants, the geographical location of counterparties and collateral, and sectoral classifications 
(firms belonging to the same sector have correlated exposures). Heterogeneities may also result 
from the fragmented U.S. regulatory landscape.  

Technological change may have two differing impacts. On the one hand, it is important for 
mitigating and adapting to the effects of climate change. On the other hand, climate change-
induced innovation may cause certain assets to suffer a devaluation and become stranded. Thus, 
understanding how innovation evolves is a crucial part of assessing CRFSRs. Many methodologies 

 
11 The assessment of CRFSRs requires new, unique, and granular data. These data are, at best, only partially 
available. Moreover, data linking past climate change events to financial stability risks may not be 
representative of future pathways. Appendix 6.1 contains a brief description of data needs for the 
methodologies discussed in section 3. 
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either do not consider innovations or make simple assumptions about them. Given the magnitude 
of technological and infrastructural changes we have experienced in the last few decades, it is 
important to consider them when assessing vulnerabilities related to climate change. Moreover, 
considering both climate adaptation and mitigation in response functions should be central in 
modeling CRFSRs. 

Damage functions map climate-related risks to economic and household welfare outcomes. They 
are important for determining the social costs of climate change and, hence, the optimal policy 
response. Damages, among other things, include net negative effects on the labor market, capital 
stock, and natural capital. Tangible and non-tangible impacts of climate change are difficult to 
estimate, which may lead to limited damage functions and imprecise (“noisy”) estimates of 
economic damages. 

The remainder of this section catalogues the range of methodologies that have been used to study 
climate-related risks and could be employed to estimate U.S. CRFSRS, while focusing on their 
ability to address the five challenges discussed above. We describe each methodology briefly and 
then discuss key empirical findings. When meaningful, we distinguish between transition and 
physical risks and whether a methodology is suitable for forward- and/or backward-looking 
analyses. When available, we report financial system vulnerabilities and an assessment of those 
vulnerabilities (high/medium/low) based on the literature we review. It is important to note that 
vulnerabilities and their assessments are based on the literature we analyze and are, by definition, 
incomplete. For each assessment, we also indicate the uncertainty (high/low) surrounding that 
assessment. To do so, we look at the number of studies available for the assessment, the modelling 
assumptions behind those studies, and the overall qualitative evaluation of the results. We begin 
our discussion with methodologies that have historically been more prevalent.12 

3.1 Integrated Assessment Models 
Integrated assessment models (IAMs) combine economic and climate models to analyze the 
relationships between emissions, climate change, and economic growth. The goal of an IAM is 
either to (1) conduct a highly aggregated cost-benefit analysis of climate change mitigation, or (2) 
analyze the cost-effectiveness of climate policies and their resulting emissions pathways. IAMs 
are widely used for developing climate scenarios.13 IAMs (together with equilibrium models, 
discussed in Section 3.2) have long been used to study broad economic climate-change 
implications, and only recently have been used to assess CRFSRs. 

 
12 Section 6.2 in the Appendix contains a schematic comparison of methodologies across different 
dimensions. 
13 IAMs are featured prominently in reports from the Intergovernmental Panel on Climate Change, and they 
are used by government agencies to calculate the economic damage from a marginal unit of greenhouse gas 
emissions, or the “social cost of greenhouse gases” (Interagency Working Group on Social Cost of 
Greenhouse Gases, 2021). 
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At a basic level, IAMs consist of two interlinked “modules.”14 The first is an economic module, 
which models production, consumption, and investment. This is typically an aggregated 
representative agent model where the agent solves an intertemporal optimization problem. The 
second module is a climate module, which models greenhouse gas emissions and the carbon cycle. 
The climate module estimates the changes to incremental geophysical factors such as global mean 
temperature. 

Despite their wide usage, IAMs have significant shortcomings, as shown in Table 1.15 Like other 
models, IAMs are limited by the inherent difficulties of modeling climate change, especially 
because most IAMs do not model tipping points or feedback loops in the climate system. 
Additionally, the outputs of IAMs are typically highly aggregated, and IAMs generally do not 
account for heterogeneity, instead relying on a representative agent approach and using aggregated 
damage functions.16, 17 Moreover, most IAMs do not model financial intermediation, and they 
typically do not account for long-term technological advancements or damages from disorderly 
transitions away from fossil fuels. Finally, IAMs rely on arbitrary social discount rates, which raise 
technical and ethical concerns.18 

Given their lack of a financial component, researchers do not use IAMs in isolation to estimate 
financial stability risks. Instead, some researchers use IAMs to build integrated economic and 
climate scenarios. They then use these scenarios as an input to a second methodology, such as a 
stress test.19  

3.2 Equilibrium Models 
General equilibrium models solve for a complex system of endogenous responses of economic 
agents, interlinkages, and systemic interactions between various agents and sectors in the 
economy. As such, these models can help with studying economic and financial implications of 
climate change, going beyond reduced-form or statistical methods. In Sections 3.2.1 and 3.2.2, we 
concentrate on the two main methodologies used to assess CRFSRs in an equilibrium setting. 

 
14 A subset of IAMs, called policy optimization models (POMs), include a third module for the economic 
damages of climate change (IPCC, 2001). In this module, the “damage function” calculates economic 
damages based on inputs from the economic and climate modules. 
15 For an extended discussion of the shortcomings of IAMs, see Farmer, Hepburn, Mealy, and Teytelboym 
(2015). 
16 IAMs can be complex and produce disaggregated intermediate outputs. However, because IAMs typically 
rely on simplified economic and climate modules with many assumptions, researchers tend to use only the 
final aggregated model outputs. 
17 These functions are central to cost-benefit analysis using IAMs, but they have been criticized by 
researchers for their lack of calibration data and use of scalar functions of temperature (see Farmer et al., 
2015). 
18 The social discount rate heavily influences the economic damages and emissions pathways of IAMs, 
often to the point of dominating other model inputs (e.g., see Emmerling Drouet, van der Wijst, van Vuuren, 
Bosetti, and Tavoni, 2019). The discount rate is also widely acknowledged as raising ethical concerns over 
inter-generational equity, as higher discount rates place a lower value on the social welfare of future 
generations, allowing for less aggressive climate policies (see Beckerman and Hepurn, 2007). 
19 Several studies discussed in Section 3.7 rely on a set of scenarios constructed using IAMs.  
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3.2.1 Computable General Equilibrium Models  
The Computable General Equilibrium (CGE) approach is one of the most popular ways to model 
and solve for general equilibrium, in a theoretically consistent fashion. It computationally solves 
for key economic equilibrium outcomes, including resource allocation and income distribution. 
Such economic outcomes and welfare effects under different climate scenarios, and the ensuing 
disruptions of economic activity, can be used for comparative statics analysis of climate-related 
risks.  

The CGE approach has strengths and weaknesses, as shown in Table 1. On one hand, it allows 
measurement of climate-related economic outcomes and welfare costs over a long horizon that 
easily extends beyond the short-term horizon of 3 to 5 years. CGE models can also be flexibly 
adjusted to multi-sector, multi-country, or global set-ups, each of which is suitable for assessing 
policies covering different levels of jurisdictions. The approach is often criticized for relying on 
strong assumptions, particularly on perfect information, exogenous technology, a lack of 
adjustment costs and frictions in production, and an inelastic supply of labor. These assumptions 
do not allow the model to speak to uncertainty, endogenous responses in technology, or input 
substitution. However, CGE models can incorporate heterogeneous exposure of economic agents 
to climate-related risks and, to some extent, damage functions. Lastly, the so-called “black box” 
aspect – complex and often custom-written models with a large number of variables – makes it 
hard to decompose the mechanism and trace the effects of policies to particular features or 
parameters in the model. 

Despite their wide popularity in climate studies, CGE models have not been sufficiently altered to 
incorporate aspects that can address financial stability implications of climate-related risks. 
Instead, these models have been mostly used to assess economic impacts of climate-related 
outcomes in the U.S., as well as in many other countries.20 Similar to IAMs, the CGE models have 
also been used to develop climate scenarios that can feed into other approaches including stress 
tests.  

3.2.2 Dynamic Stochastic General Equilibrium Models 
Similar to the CGE models, Dynamic Stochastic General Equilibrium (DSGE) models constitute 
another type of micro-founded general equilibrium models, which can incorporate behavioral 
changes and systemic interactions among agents and sectors in the economy over a short- to long-
term time horizon. As shown in Table 1, DSGE models improve on the CGE models by 
incorporating uncertainty and endogenous changes in technological innovation in response to 
climate events and policies. In addition, DSGE models allow one to more clearly identify the 
transmission mechanism of different types of uncertainty (technological, monetary, etc.), to 
compare different policy interventions, and to prescribe a time-optimal path for the best policy 
instrument. However, such improvements come at the expense of computational burden which 

 
20 CGE models in climate studies have examined backward- as well as forward-looking economic impacts 
of both physical and transition risks in the U.S. Some studies include Babiker et al. (2000), Fan and 
Davlasheridze (2019), Hazilla and Kopp (1990), Jorgenson and Wilcoxen (1993), and Rose and Liao 
(2005). 
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tends to limit the size of a typical DSGE model, including the degree of details (for instance, 
sectoral disaggregation, heterogenous climate exposures by different economic agents, and 
damage functions) that the model can handle. Assumptions on rational expectations and 
stationarity of fundamentals are other commonly criticized features of the DSGE. In particular, the 
nature of climate uncertainty makes it hard to assess optimal climate policy predictions based on 
DSGE models. For instance, when DSGE models are used to examine real business cycle effects, 
the underlying stationarity of the fundamentals imply that errors will ultimately be corrected. This 
is not the case for climate change, where errors are likely to compound over time. 21 

Similar to IAMs and CGE models, DSGE models have mostly focused on assessing the economic 
impacts of climate-related risks in the U.S., rather than studying financial stability implications.22 
These models are also being used by central bankers and industry practitioners to develop climate 
scenarios that serve as inputs for other analyses such as stress tests and other practitioner 
approaches. However, the literature on Environmental DSGE (“E-DSGE”) models has been 
growing. Among the few recent studies that have begun to specifically examine the financial 
impacts of climate-related risks is Carattini, Heutel, and Melkadze (2021). 23 They model the 
banking sector within a DSGE framework and examine the implications of financial frictions (i.e., 
the moral hazard problem between depositors and banks) on transition risk in response to, 
specifically, a carbon tax. Calibrating on U.S. data, their simulation results over a five-year horizon 
show that an abrupt transition can induce banking sector volatility by immediately dropping the 
banking sector capital by around 10 percent through bank exposures to non-green firms’ assets, 
only to fully recover over the next five years.  

Findings from E-DSGE models with financial systems provide preliminary assessments of the 
U.S. CRFSRs. For instance, the findings by Carattini et al. (2021) claim that U.S. financial stability 
implications of forward-looking transition risk may be low, because current bank capital buffers 
can easily absorb a 10 percent loss in equity—see Table 2.24 Nevertheless, at the current stage, 

 
21 Heutel (2012) uses an Environmental DSGE (“E-DSGE”) model to run simulations over 25 years to show 
that procyclicality in carbon emissions is optimal. Golosov, Hassler, Krusell, and Tsyvinski (2014) uses a 
DSGE to claim that the optimal carbon tax is slightly higher than median estimates from the literature. 
Other applications include Annicchiarico and Di Dio (2015), and Dissou and Karnizova (2016). 
22 DSGE models in climate studies have examined forward-looking economic impacts of both physical and 
transition risks in the U.S., e.g., Fischer and Springborn (2011) and Keen and Pakko (2007). More recently, 
E-DGSE models have become one of the most popular approaches in the climate literature to gauge 
economic impacts on transition risks and, in particular, inform the optimal climate policy – see 
Annicchiarico and Di Dio (2015), Dissou and Karnizova (2016), Golosov et al. (2014), and Heutel (2012). 
23 However, most such extensions of E-DSGE remain in nascent stages, incorporating financial modeling 
within the E-DSGE but not necessarily modeling financial stability risks. An example of such research is 
Punzi (2018). This paper shows that the E-DSGE model can be extended to incorporate bank lending and 
examine the capital requirements to promote production by the green (non-polluting) sector. The paper 
finds that positive financial shocks (e.g., easier access to credit) to green firms and macroprudential policies 
like differentiated capital requirements can have lasting positive impacts on the output increase by green 
firms. 
24 Other findings include the drop in equity capital leading to a general reduction in bank lending to all 
sectors including both green (non-polluting) and non-green during the transition process, thereby 
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such assessment should be carefully considered for any practical use and several important caveats 
should be considered. First, such assessment is based on an exceptionally thin literature, and hence, 
the uncertainty surrounding the assessment is unusually large. Second, the findings will vary 
greatly depending on modelling assumptions, including the type, nature, and severity of financial 
market frictions, potential departures from the representative agent and single sector framework, 
and calibration of certain parameters including substitutability.25 Lastly, the assessment does not 
address forward-looking transition risk to financial stability overall. It only reflects one type of 
vulnerability, namely aggregate bank leverage, and does not speak to other types of vulnerabilities, 
such as asset valuation or leverage in other parts of the financial sector.  

3.3 Overlapping Generation Models 
In contrast to the infinitely-lived agents in models discussed in Sections 3.1 and 3.2, overlapping 
generation (OLG), or life-cycle, models are populated by finite-lived cohorts of agents that coexist 
for some time. These models’ intergenerational aspect, with “young” and “old,” makes them 
particularly instructive in the context of climate change because the costs and benefits of climate 
change and mitigation policies fall unevenly on different generations. They are also useful for 
studying the fiscal implications and distributional effects of carbon taxes and other mitigation 
policies for different generations, as indicated in Table 1.  

An early contribution by Howarth (1998) calibrates an OLG model of climate change and the 
world economy to study optimal abatement policies under alternative social welfare functions. 
Absent intergenerational transfers, efficient abatement implies a mean global temperature increase 
of 7.4°C relative to the pre-industrial norm. A utilitarian optimum (where current and future 
generations are equally weighted) features much more aggressive abatement and a long-run 
temperature increase of 3.4°C.26 More recently, Rausch and Yonezawa (2018), and Williams, 

 
lengthening the duration of the overall economic recession. Macroprudential policy that shifts bank 
exposure from non-green to green firm assets can mitigate such transition risk. 
25 The authors recognize some of these shortcomings. 
26 Leach (2009), Rausch (2013), Carbone, Morgenstern, Williams, and Burtraw (2013), and Fried (2018) 
show that current and future generations will have conflicting preferences on how carbon taxes revenues 
are “recycled.” Sachs (2014) suggests funding mitigation efforts with public debt (rather than taxes) in 
order to shift mitigation costs to later generations that benefit from mitigation. Rasmussen (2003) simulates 
a multi-sector model of the U.S. to reckon the distributional effects of a carbon tax. He finds that generations 
a century out incur substantially higher costs than current generations and the current old generation may 
gain. Karp and Rezaei (2014) study the distributional aspect of a carbon tax and the associated political 
economy. They show (theoretically) that because asset prices capitalize future environmental benefits, 
carbon taxes benefit the current old generation (that owns the assets) and harms the current young one by 
decreasing real wages. Transfer from the old to young generation can improve the distributional effects, 
and, under certain political/demographic circumstances, such transfers are politically implementable. In an 
early application, John and Pecchinino (1994) study the tradeoff between growth and the environment in 
an OLG model where people care about both. In equilibrium, environmental quality fits the well-
documented, environmental “Kuznets curve” – lower quality in middle-income countries. Even though the 
environment is a public good, overinvesting in environmental quality can occur (a dynamic inefficiency 
typical in OLG models). Kotlikoff, Polbin, and Zubarev (2016) argue using an OLG model that gradual 
abatement strategies such as the 2015 Paris Accord create a “use it or lose it” that may accelerate fossil fuel 
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Gordon, Burtraw, Carbone, and Morgenstern (2014) use an OLG framework to analyze the 
distributional effects of carbon taxes.  

OLG models can also capture related externalities and dynamic inefficiencies because current 
generations may not consider how their decisions affect future ones. While useful in those regards, 
the OLG framework as applied in the climate context tends to be theoretical (or, occasionally, 
simulated), so it may be less useful than other methodologies for calibrating financial stability 
risks. Because the analysis tends to be theoretical, it is also more forward-looking. None of the 
OLG literature to date considers the financial stability implications of climate change for the U.S., 
as demonstrated by the NAs in Table 2.  

3.4 Statistical Methods 
Statistical methods complement analyses based on equilibrium and integrated assessment models. 
The methods described in the previous sections are well-suited to capture interactions between 
agents but rely on statistical methods to accurately measure correlations in the data that, in turn, 
are used as building blocks for equilibrium models. Macro- and micro-econometric statistical 
methods have been used in asset pricing and corporate finance, two subfields of the broader finance 
academic literature, to identify and measure U.S. CRFSRs. As reviewed below, the asset pricing 
literature has analyzed whether physical and transition risks are incorporated in prices of financial 
assets, including equity, fixed income, and real estate. The corporate finance literature has 
analyzed the extent to which firms, and the productive sector at large, are exposed to physical and 
transition risks. These two types of analyses are informative for U.S. CRFSRs to the extent that 
the financial sector (e.g., banks, pension funds, insurance companies, hedge funds, mutual funds) 
is highly exposed to (i) swings in asset prices related to a sudden reassessment of physical and 
transition risks or (ii) direct and indirect losses following extreme climate change-related events.  

While widely used in the literature, statistical methods have some limitations, as shown in Table 
1. On the one hand, they are intuitive, simple to estimate, and able to capture the important role of 
heterogeneities (e.g., geographical, sectoral, regulatory differences) for assessing CRFSRs. On the 
other hand, they rely on partial equilibrium models estimated on past or current information and, 
therefore, ignore equilibrium considerations, particularly important given the long time horizon of 
climate change and the role of technological changes. While well-suited to estimate direct 
damages, the reduced form nature of these models does not allow a precise estimation of the 
indirect costs such as social costs. Moreover, statistical methods do not necessarily capture the 
inherent uncertainty of climate change but are helpful to document non-linearities of physical and 
transition risks. It should also be noted that statistical methods, like DSGE models, CGE models, 
and IAMs, can be used to develop climate scenarios which serve as inputs for other approaches, 
which we discuss in Sections 3.7 and 3.8. They can also be used to calibrate parameters and inform 
assumptions of agent-based models, as discussed in Section 3.6.  

Physical risk, backward-looking. The backward-looking statistical methods literature mainly 
provides evidence of changes in firm behavior and asset prices in response to physical risks of 

 
use and thus raise global temperatures. The paper uses a simple OLG model to illustrate this long-noted 
Green Paradox. They show immediate policy action can raise welfare for all generations.  
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climate change. Brown, Gustafson, and Ivanov (2021) show that firms respond to winter weather 
by drawing down and increasing the size of their credit lines with banks. The banks charge 
borrowers for this liquidity via increased interest rates and less borrower-friendly loan provisions. 
Ivanov, Macchiavelli, and Santos (forthcoming) also show that banks help firms hit by disasters 
but reduce their credit supply to distant regions that are not affected by disasters. Correa, He, 
Herpfer, and Lel (2020) show that, following disasters, banks also increase rates charged to at-risk 
but unaffected firms. Barth, Sun, and Zhang (2019) document that bank income increases after 
natural disasters and confirm that banks play a key role in supporting the economy following 
natural disasters. Blickle, Hamerling and Morgan (2021) also find increased bank income and 
lending after weather disasters with only insignificant or small effects on loan losses and default 
risk. Both studies suggest that physical risks to banks are modest. By contrast, Noth and Schuewer 
(2018) find that extreme weather events increase the likelihood of banks’ default and foreclosure 
ratios. Affected firms rely on banks for emergency liquidity, provided at higher rates and less 
favorable terms precisely when these firms need liquidity the most. Banks, in addition to potential 
direct damages from extreme climate events, might also face sudden large drawdowns from 
existing credit lines as firms tap banks’ liquidity to navigate climate shocks increasing, in turn, 
banks’ incomes. 
 
The statistical methods literature also speaks to the effect of physical risks on asset prices. Baldauf, 
Garlappi, and Yannelis (2020) find that houses projected to be underwater in neighborhoods where 
households believe in climate change sell at a discount compared to neighborhoods where 
households do not believe in climate change.27 Bernstein, Gustafson, and Lewis (2019) find that 
homes exposed to sea level rise sell for approximately 7 percent less than observably equivalent 
unexposed properties equidistant from the beach. The authors also show that this discount has 
grown over time and is driven by sophisticated buyers and communities worried about global 
warming. These price differences are likely reflected in the value of assets held by financial 
institutions, such as mortgages, mortgage-backed securities, and other related products. 
 
Huynh and Xia (2021) find that prices of corporate bonds incorporate climate-related risks. Bonds 
with a higher climate change news beta earn lower future returns, as investors increase their 
demand for bonds that can be used to hedge against climate-related risks. Goldsmith-Pinkham, 
Gustafson, Lewis, and Schwert (2021) and Schwert (2017) show that municipal bond prices also 
incorporate climate-related risks. Changes in climate-related risks might therefore affect corporate 
bond holders, such as insurance companies and pension funds. Finally, Braun, Braun, and Weigert 
(2021) find a “hurricane premium” – stocks with a low sensitivity to U.S. hurricane losses 
outperform those with a high sensitivity by 8.9 percent per annum, suggesting that climate-related 
risks may have a nontrivial impact on asset pricing. 
 
Combined, the backward-looking statistical methods literature suggests that both housing and 
securities markets are vulnerable to the physical risks of flood exposure and changes in individual 

 
27 The authors obtain beliefs about climate change at the county level from the Yale Climate Opinion Maps 
2016.  
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beliefs in climate change. As seen in Table 2, the overall assessment of financial vulnerabilities 
linked to backward-looking physical risk is likely medium, driven ultimately by the degree of 
lenders’ diversification, the extent to which asset prices already incorporate climate-related risks, 
and the severity of future climate shocks. 
 
Physical risk, forward-looking. The forward-looking statistical methods literature on financial 
stability and climate change highlights both the effect of physical risk and potential ways to 
incorporate this risk into asset pricing. Lemoine (2021) estimates that an additional 2°C of global 
warming would eliminate profits from the average acre of current farmland in the eastern U.S. The 
physical risks posed by climate change are particularly important for the real estate market. Rao 
(2017) shows that if sea levels rise in line with scientists’ predictions by 2100, almost 300 U.S. 
cities would lose at least half of their residential real estate, and 36 U.S. cities would be completely 
lost. Florida is particularly affected as one out of eight homes in Florida would be under water.  
Hauer, Evans, and Mishra (2016) also analyze physical risk in the U.S. real estate market and find 
that a 2100 sea level rise of 0.9m places a land area projected to house 4.2 million people at risk 
of inundation, whereas 1.8m sea level rise affects 13.1 million people. Ouazad and Kahn (2021) 
show that lenders are more likely to approve mortgages that can be securitized, thereby transferring 
climate-related risk, in the aftermath of natural disasters. Engle, Giglio, Kelly, Lee, and Stroebel 
(2020) present a methodology, based on option pricing, for constructing climate-related risk hedge 
portfolios using publicly traded assets. Perez-Gonzalez and Yun (2013) study the introduction of 
weather derivatives and find that weather-sensitive firms disproportionally benefit from this 
innovation. The use of weather derivatives leads to higher valuations, investments, and leverage.  
 
Effectively pricing climate-related risk is an adaptation strategy to mitigate the losses that can 
potentially take place within the century. The overall assessment of vulnerabilities linked to 
forward-looking physical risk is likely high, mostly driven by commercial and residential real 
estate, through direct holdings and securitization activity. 
 
Transition risk, backward-looking. Backward-looking statistical models provide an 
understanding of how firms’ and investors’ risk-taking behaviors respond to transition risks. Hsu, 
Li, and Tsou (2020) document a large pollution premium, namely substantially higher returns 
generated by high toxic emission intensity firms compared with low toxic emission intensity firms. 
The authors attribute the pollution premium to environmental policy uncertainty, which they 
interpret as a source of systematic risk. Furthermore, firms’ preferences for climate-aware assets 
and investor demands from climate-negligent firms indicate the inclusion of transition risks into 
risk-taking behavior. These premia might represent a vulnerability, to the extent that investors will 
require even lower returns to hold climate-aware assets in the future, in turn, affecting the prices 
of assets held by financial institutions. Baker, Bergstresser, Serafeim, and Wurgler (2020) show 
that investors sacrifice returns to hold green bonds. Municipal green bonds are issued at a premium 
and their ownership is more concentrated, with a small subset of investors over-weighing these 
bonds in their portfolio. Chava (2014) finds that investors demand significantly higher expected 
returns on stocks excluded by environmental screens compared with firms without such 
environmental concerns. The author also shows that lenders charge a higher interest rate on loans 
issued to firms with these environmental concerns. These higher borrowing costs might cause 
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weak firms to struggle making interest payments, pushing them closer to financial distress. Seltzer, 
Starks, and Zhu (2021) also document that firms’ bond financing costs reflect their carbon 
footprints, particularly when the issuer is located in a state with stricter regulatory enforcement. 
Ivanov, Kruttli, and Watulaga (2021) show that high-emission firms face shorter loan maturities, 
higher interest rates, and lower access to permanent forms of bank financing compared to low-
emission firms. This evidence suggests an overall assessment of vulnerabilities linked to 
backward-looking physical risk as medium, as shown in Table 2. 

Transition risk, forward-looking. The forward-looking transition risk literature emphasizes 
balance sheet and asset pricing behavior in response to the discontinued use of environmentally 
harmful resources. Bolton and Kacperczyk (2021) analyze firms’ exposures to carbon-transition 
risk. They document a widespread carbon premium, higher stock returns for companies with higher 
levels of carbon emissions, in all sectors over Asia, Europe, and North America. Morris, Kaufman, 
and Doshi (2021) document that the transition from carbon will likely hit the public finances of 
coal-dependent communities. As seen in Table 2, the overall assessment of vulnerabilities linked 
to forward-looking transition risk is likely medium, mostly driven by potential swings in asset 
prices following changes in transition risks. 
 
While the literature on statistical methods in assessing U.S. CRFSRs is relatively abundant, there 
is substantial uncertainty about its findings, as highlighted in Table 2. Given their partial 
equilibrium and inherently backward-looking nature, these models can be used to measure 
correlations in past data and discipline equilibrium models. However, the estimated coefficients 
typically depend on the empirical setting, such as a specific natural event. In addition, even holding 
the event constant, the estimated coefficients in a particular geographical region in a year might 
differ from those estimated in another area or year. In sum, the magnitudes obtained with statistical 
methods might not generalize outside the empirical context where the methods were applied, in 
turn, generating substantial uncertainty about the use of the estimates to guide policy. 

3.5 Input-output Models 
Input–output (IO) models are quantitative economic models that represent the interdependencies 
between different sectors of an economy.28 They present the domestic supply and use of 
commodities by industry and show how the output from one industrial sector may become an input 
to another sector. Thus, the models help to identify not only industries that produce carbon-
intensive assets, but also the ones using such assets as inputs. Because indirect losses from a 

 
28 Both IO models and integrated assessment models (IAMs) bring together and summarize relationships 
from different parts of the economy to assess climate risks. However, IO models specifically consider the 
interlinkages between various industries through their production and usage of carbon intensive assets, 
whereas IAMs consider different parts of the economy including demographic, political, and economic 
variables that affect climate risks. 
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climate event may surpass direct losses in a developed, highly interconnected economy, IO models 
have gained interest, especially in disaster evaluation.29  
 
The main strength of environmentally-extended input-output (EEIO) models lies in their ability to 
provide a simple and robust method for evaluating the linkages between economic consumption 
activities and their environmental impacts. Because they are using input-output data to estimate 
the linkages among different sectors in the economy, they do not require strict assumptions, they 
are helpful for addressing some of the uncertainty inherent to modelling climate change, and are 
less complex than many alternatives, such as CGE models. Hence, by construction, IO models 
incorporate heterogeneous agents in the economy, at least at the sectoral level and might be useful 
in identifying potentially vulnerable geographies and sectors to transition policies. Finally, IO 
models are useful for producing estimates of climate change-related damages by incorporating 
linkages among different sectors. However, such data reliance brings the biggest caveat of IO 
models: They are mostly backward-looking and require extrapolation from past trends, as they are 
based on historical input-output tables. Thus, the models cannot capture significant technological 
advances. Second, given this lack of adaptation to technological change, IO models are more 
relevant for short- to medium-term horizon implications, which can be challenging since climate-
related risks are better captured over a longer-term time horizon. Finally, IO models mainly focus 
on supply chain disruptions (rather than general equilibrium effects) and thus are arguably 
incomplete. These benefits and drawbacks of IO models are summarized in Table 1.  

Though IO models are mostly retrospective, they are used to quantify both backward-looking 
physical risk and forward-looking transition risk. A few papers employ IO models to study the 
effects of transition risk on financial stability at an international level (see Vermeulen, Schets, 
Lohuis, Kolbl, Jansen, and Heeringa, 2018 for an application for Netherlands, and Mainar-
Causapé, Barrera-Lozano, and Fuentes-Saguar, 2020 for various European Union states). A 
number of studies, including Mathur and Morris (2014) and Marron and Toder (2015), have 
examined the distributional effects of a carbon tax across income classes and/or regions in the 
United States. A few studies also use IO models to assess the economic impact of climate disasters 
in the United States (see Hallegatte, 2008, and Kunz, Mühr, Kunz-Plapp, Daniell, Khazai, Wenzel, 
Vannieuwenhuyse, Comes, Elmer, Schröter, Fohringer, Münzberg, Lucas, and Zschau, 2013, who 
study the costs of Hurricane Katrina and Hurricane Sandy, respectively). However, there is no 
study in the extant literature that employs IO models to assess U.S. CRFSRs, as noted by the NAs 
in Table 2. 

 
29 One application of the IO model on the climate universe is developed by the U.S. Environmental 
Protection Agency. The technical details of the U.S. Environmentally-Extended Input-Output (USEEIO) 
model can be found in Yang, Ingwersen, Hawkins, Srocka, and Meyer (2017). In a nutshell, USEEIO uses 
the Bureau of Economic Analysis IO tables and pairs them with environmental data on resource use and 
releases of pollutants from various public sources. Thus, the model outcome can be used to quantify 
environmental impact of all commodities and industries in the U.S. See:  
https://www.epa.gov/land-research/us-environmentally-extended-input-output-useeio-technical-content 
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3.6 Agent-based Models 
Agent-based models (ABMs) are simulation-based models that capture complex interactions and 
feedback mechanisms between heterogenous agents and the financial and real economies. In the 
simulations, agents can be households, firms, banks, and the government, amongst other entities, 
and these agents are programmed to operate based on certain rules and assumptions. Thus, these 
models can provide granular, forward-looking insight into how climate-related risks can affect 
different economic and financial actors.  

A key advantage of ABMs is that they are flexible enough to incorporate heterogenous agent 
assumptions, which allow for a more realistic representation of socioeconomic systems. This is 
especially relevant for U.S. climate change analysis, as different regions of varying incomes are 
likely to experience heterogenous effects from climate change (see Hsiang, Kopp, Jina, Rising, 
Delgado, Mohan, Rasmussen, Muir-Wood, Wilson, Oppenheimer, Larsen, Houser, 2017). ABMs 
are also flexible enough to incorporate empirical evidence since they are not equilibrium 
constrained, meaning that ABMs can use more realistic estimates of climate change-related 
damages and have more flexible damage functions, as noted in Table 1. Another advantage is that 
ABMs can incorporate uncertainty in agents’ decision-making and capture endogenous changes 
that arise due to agent interactions – such as technology adoption or formation of market structures 
– which is helpful for addressing some of the uncertainty inherent to modelling climate change. 
Climate nonlinearities and tipping points also pose additional uncertainties as they are tail-risks; 
ABMs can somewhat address this challenge, as they inherently run repeated simulations for events 
associated with different probability distributions. Since ABMs are simulation-based, it is possible 
to forecast the longer-term, which is helpful given that climate-related risks are better captured 
over a longer-term time horizon. Finally, ABMs are particularly applicable to financial stability 
questions, as they can closely model economic and financial systems and provide systemic risk 
assessments by incorporating specific agent and network effects.  

Despite these merits, two key challenges remain. First, ABMs are very computationally intensive 
and require detailed data to build agents’ behavioral rules (see Farmer, Hepburn, Mealy and 
Teytelboym, 2015 and Patt and Siebenhüner, 2005). As computing power increases and 
socioeconomic and climate datasets expand, this challenge may be less relevant. Second, agents’ 
behaviors may not be rational and representative with respect to climate-related risks (see Farmer 
et al., 2015). Thus, results are still subject to uncertainty and do not necessarily fully reflect the 
costs and risks of climate change. 

In connection with methodologies above, it should be noted that the outputs of statistical methods 
can be used to inform parameters and assumptions in ABMs. Furthermore, modelling capabilities 
are improving and expanding in the direction of agent-based integrated assessment models (see 
Farmer et al., 2015). That said, there are not yet studies in the literature that use ABMs to examine 
the potential impacts of U.S. CRFSRs, as shown by the NAs in Table 2.  

3.7 Scenario Analysis, Stress Testing, and Sensitivity Analysis 
Scenario analysis considers the outcomes of plausible climate scenarios, sometimes over long time 
horizons, to estimate CRFSRs. This approach takes climate and economic projections as inputs, 
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links their parameters to financial risks, and outputs costs and exposures to risk. Though quite 
similar to scenario analysis, sensitivity analysis and stress tests differ in construction and 
applicability. In a sensitivity analysis one parameter is changed between two scenarios to analyze 
its specific effect, or “sensitivity”, on results. For instance, given a carbon tax scenario, a sensitivity 
analysis might change the parameter for the cost of renewable energy technologies to better 
understand how sensitive the effects of a carbon tax policy are to the price of renewable 
alternatives. In a climate stress test, a modeler uses granular balance sheet data to predict the impact 
of a sudden climate-related shock on a large financial institution’s portfolio (microprudential) or 
the financial system as a whole (macroprudential). Stress tests analyze tail events and can be used 
in conjunction with scenario analysis for supervisory assessments. Scenario analyses do not 
necessarily consider tail events and can be used by both financial institutions and supervisors. 
These methodologies share many similarities and are thus discussed together in this section. 

These three methodologies typically take climate scenarios as an input to model the impact of the 
scenarios on a range of economic and financial outcomes, such as real estate prices or sovereign 
credit ratings. The scenarios differ in their projected levels of emissions, the extent of climate 
change, climate policies, technological changes, and damages to the global economy. The 
scenarios can be modeled using IAMs, CGEs, DSGEs, statistical methods, and other climate and 
economic modeling tools. There are also “off-the-shelf” scenarios developed by economists and 
climate scientists for the public research community.30 

A key benefit of these methodologies is that they can address some of the uncertainties inherent to 
climate-related risks by considering a wide range of possible future pathways, instead of 
attempting to predict an exact future outcome. Additionally, these methods are applicable to many 
institutions, such as banks, governments, insurers, and central banks, for purposes such as risk 
management, strategic decision making, investment in adaptation, and resource allocation. This 
wide-ranging applicability can shed light on heterogeneities in climate-related risks. While these 
methodologies are being increasingly used and provide beneficial risk assessments, their results 
are still subject to uncertainty and hampered by data gaps. For example, historical records may be 
incomplete or of little use for predicting the severity and frequency of future climate disasters; this 
is challenging for financial markets, institutions, and regulators, who typically rely on historical 

 
30 Frequently used scenarios are: 

 Representative Concentration Pathways (RCPs), developed by the IPCC. There are several RCPs 
and each reflects a possible trajectory for global emissions, differing in their particle concentrations 
and radiative forcing. See Pachauri et al. (2014). 

 NGFS climate scenarios, developed by the Network for Greening the Financial System. The 
scenarios reflect low and high levels of physical and transition risk, ranging from “orderly” to “too 
little, too late”. See NGFS (2021). 

 World Energy Outlook scenarios, published by the International Energy Agency (IEA). The WEO 
scenarios are based on the World Energy Model, a large-scale energy market simulation. See IEA 
(2021). 

It is important to note that these scenarios have limitations, and some institutions regularly update the 
assumptions used in their construction.  
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data to inform their understanding of potential future risks. The strengths and challenges of these 
methodologies are noted in Table 1. 

Scenario analysis, stress testing, and sensitivity analysis can be applied to estimate vulnerability 
to physical risk, both chronic and acute. For chronic risks, these methodologies will typically use 
a scenario projecting incremental changes in long-term climate patterns such as temperature, 
precipitation, or sea level, and model how an incrementally harsher climate could lead to a build-
up of vulnerabilities. For example, UBS conducted a sensitivity analysis as part of the UN 
Environment Finance Initiative (UNEP FI) Pilot to estimate the exposure of its utility company 
loans to the incremental physical damages of climate change.31 Comparing 2°C and 4°C scenarios 
with a baseline, UBS estimated productive capacity losses of the firms in its portfolio and 
translated the losses into increased probabilities of default.  

For acute physical risk, these methodologies are used to estimate the impact of extreme events on 
firm operations and financial health. This can be done either by simulating the impact of a single, 
very extreme event, such as a powerful hurricane, or by estimating the impact of changes to the 
underlying distribution of weather events, whereby severe weather events such as wildfires 
become longer, more frequent, and more severe. For example, Citi recently conducted a scenario 
analysis to assess the operational resiliency of their New York City and Tampa facilities in the 
face of severe thunderstorms and tropical storms and found that remote work strategies can help 
maintain business continuity.32 A McKinsey case study examines the impacts of storm surges on 
residential real estate in Florida using a Representative Concentration Pathways (RCP) 8.5 
scenario; they project that losses from tail events are likely to increase from about $35 billion today 
to $50 billion by 2050.33 The study also highlights that the federal government serves as a final 
backstop for coverage of disaster-related losses. The Congressional Budget Office (CBO) notes 
that damages from hurricane winds, storm surges, and heavy rain may impact the federal budget 
in two ways: (i) increased spending for repairs and assistance, and (ii) an increase in net federal 
outlays.34 They also find that expected annual economic losses from damages caused by hurricane 
winds and storm-related flooding are about $34 billion to the residential sector, $9 billion to 
commercial businesses, and $12 billion to the public sector. Thus, the overall assessment of 
vulnerabilities linked to forward-looking physical risk is likely high with a high level of 
uncertainty (see Table 2). 

These methods have also been used to understand the potential for transition risk to financial 
institutions. Practitioners will typically study either the impact of a sudden change in climate-
related policies and regulations or the long-term impact of changes in production and consumption 
related to the transition away from carbon-intensive activities, including the impacts of stranded 

 
31 UNEP (2018). 
32 Citigroup (2020). 
33 For these statistics, the study defines a “tail event” as an event with a current one percent annual 
probability. The authors note that “Damages with current annual exceedance probability of 1% are projected 
to become more likely; by 2050 they are expected to have an exceedance probability of ~2%” and that 
“Damages [are] based on constant exposure, i.e., increase in potential damages to 2030 or 2050 is due to 
change in expected hazards.” See: McKinsey Global Institute (2020). 
34 Congressional Budget Office (2019). 
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assets. For example, Jung, Engle, and Burner (2021) apply a stress testing framework to estimate 
the time-varying exposure of large, advanced economy banks to a sudden collapse of returns on 
fossil fuel assets. The authors calculate a “climate beta”, or the correlation between returns on bank 
stocks and a stranded asset portfolio that takes a long position in fossil fuels and a short position 
in the S&P 500. They then estimate “CRISK”, which is each financial institution’s capital shortfall 
given a collapse in returns on fossil fuel stocks. The authors find that while some large U.S. banks 
were not significantly exposed to a collapse in fossil fuel returns, several banks that lend to fossil 
fuel firms could see large capital shortfalls. This paper applies statistical methods, stress testing, 
and other practitioner approaches (discussed in Section 3.8), highlighting the benefits of using 
multiple methodologies to assess CRFSRs. 

Relatedly, the California Department of Insurance partnered with 2° Investing Initiative (2DII) to 
analyze the exposure of Californian insurance companies to a low-carbon economy transition.35 
They also examined alignment with the goal of limiting global warming to 2°C and expected 
exposure to high- and low-carbon activities in the future. The assessment, which used IEA 
scenarios, was conducted for all insurers operating in the state with more than $100 million in 
premiums and impacts were assessed at the insurer- and system-level. The report finds that 
insurers’ assets remain exposed to transition risks and that fossil fuel investments may become 
stranded assets. The report also explores how physical risks could pose additional challenges, 
finding that insurers’ investments in coal-powered utilities are highly exposed to wildfires and that 
their assets may be negatively affected by water scarcity. More recently, 2DII has also worked 
with the New York Department of Financial Services to study insurers’ exposures to transition risk 
using a scenario analysis.36 The study reveals that most firms’ forward-looking five-year plans did 
not align with the Paris Agreement and highlights within-industry exposure differences to carbon 
intensive sectors.37 

While the previous studies indicate that insurance companies and banks38 may still have significant 
exposures to carbon-intensive assets that do not align with the Paris Agreement, the transition to a 
net-zero economy is likely to be announced in advance and implemented over time, thus the overall 
assessment of financial stability risk linked to forward-looking transition risk is likely medium 
with a high level of uncertainty (see Table 2).  

There is a small, growing literature primarily developed by practitioners that uses scenario 
analysis, sensitivity analysis, and stress testing to analyze some financial stability vulnerabilities 
from climate-related risks. However, this literature is not comprehensive across industries, asset 
classes, or time horizons, and it is especially thin for U.S.-specific risks. Additionally, these 
methods are constrained by limited data, their outputs depend on the assumptions and scenarios 

 
35 California Department of Insurance and 2DII (2018).  
36 The scenarios used in this study are based on 2DII’s Paris Agreement Capital Transition Assessment 
(PACTA) model. The PACTA tool is designed for financial entities to measure their portfolio’s alignment 
with climate scenarios that adhere to the Paris Agreement and can be accessed here: 
https://www.transitionmonitor.com 
37 New York Department of Financial Services and 2DII (2021). 
38 This is intended to capture a possible two-fold effect since banks may hold carbon-intensive assets and 
rely on insurers, who may also hold carbon-intensive assets, to backstop their losses.  
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used, and they have only been applied to certain institutions within the U.S. financial system, not 
the system itself. Moreover, the path of climate change is highly uncertain and subject to 
nonlinearities and tipping points. Therefore, while the existing literature suggests that U.S. 
vulnerabilities to real estate prices due to physical risk are likely “high,” it should be noted that 
this reflects an early stage of analysis. Likewise, while the literature suggests that vulnerabilities 
from transition risk due to exposure to carbon-intensive assets is likely “medium”, this assessment 
is similarly uncertain (see Table 2). 

3.8 Other Practitioner Approaches 
Similar to methodologies discussed in Section 3.7, climate risk scores and ratings, climate Value 
at Risk (VaR) metrics, and natural capital analyses are intended to be simpler than traditional 
modelling methods to increase applicability and usability for practitioners. They offer insights into 
exposures at varying levels of granularity, from portfolio- to system-level. Like methodologies 
discussed in Section 3.7, their assumptions and parameters can be informed by IAMs, CGEs, 
DSGEs, and statistical methods. They are also applicable to many stakeholders for risk 
management and strategic planning purposes, highlighting their ability to somewhat account for 
heterogeneity as noted in Table 1.  

Climate risk scores and ratings evaluate exposure to climate-related risks at the asset, portfolio, 
institution, and regional levels for future conditions and policies based on current operations. 
Multiple private and public entities offer these assessments at the firm- and sovereign-level, and 
these metrics can be helpful for aligning longer-term goals with climate targets. That said, each 
provider may use a different methodology, which can make it difficult to compare different 
outcomes especially since methodologies are not typically disclosed. For example, Environmental, 
Social, and Governance (ESG) scores are often created by private companies that use different 
underlying methodologies and data, making comparison across scores challenging. Without 
comparison capabilities and methodology disclosures, it can also be challenging to interpret these 
scores and ratings. For instance, ESG scores may correlate in unexpected ways, as noted by Boffo, 
Marshall, and Patalano (2020), who find that high “E” scores positively correlate with high carbon 
emissions. This can undermine the reliability of ESG scores and incentivize greenwashing. Elmalt, 
Igan, and Kirti (2021) also find “at best a weak relationship” between high ESG scoring and low 
emissions growth. Firms with better ESG scores seem to have somewhat slower emissions growth, 
but this relationship is quite weak and not statistically significant when examining within-country 
or within-firm variation. Rzeznik, Hanley, and Pelizzon (2021) find that disparate ESG rating 
scales may lead investors to buy (sell) stocks they incorrectly perceive as having been recently 
upgraded (downgraded), which may have asset pricing and financial stability impacts. Aware of 
these ESG scoring issues, Berg, Kolbel, Pavlova, and Rigobon (2021), develop a noise-correction 
procedure to better understand how ESG performance affects stock returns; they find that stocks 
with higher ESG performance have higher expected returns. Given the issues surrounding the 
transparency, quality, reliability, and comparability of climate risk scores and ratings, further 
research is needed in this space. 

Climate Value at Risk (VaR) analyses apply the traditional value-at-risk framework to assess the 
future impacts of climate change on the financial system. Using this methodology, modelers can 
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estimate the value of financial assets at risk at a given probability over a particular time horizon 
for various climate scenarios, which can be derived from IAMs, CGEs, DSGEs, and statistical 
methods. Climate VaR analyses shed light on how costly a range of possible outcomes, particularly 
tail-risk events, could be and provide a baseline estimate for damages to the financial system. 
These metrics quantify the extent of exposure, but it may be challenging to translate results into 
meaningful actions and avoid myopia since most climate-related risk is concentrated in the tail. 

Natural capital analysis measures firms’ exposure to natural degradation, such as water stress, 
habitat destruction, and land erosion from excess use. This method applies a framework that 
positions natural sources – such as water, forests, and clean air – as a limited capital stock and 
assesses future impacts of its depletion. In this analysis, practitioners identify natural 
dependencies, identify risks to those natural resources, and examine impacts on operations and 
supply chains. Rather than examining how institutions may damage natural resources, this 
methodology instead examines how institutions’ business models may be affected by natural 
capital degradation.  

Climate risk scores and ratings usually do not analyze physical and transition risk separately; these 
metrics quantify exposure to both types of risks in a single measure. That said, Bank of America 
recently conducted a pilot project to estimate how exposed a sample portfolio of their U.S. 
residential mortgages might be to acute physical risk.39 They assigned each property a score 
between zero and five based on how severely it may be impacted by 12 types of hazards. Based 
on where outstanding mortgage balances were, these risk scores were used to create heatmaps for 
visualization of potential risk exposure across the U.S. 

The climate VaR literature and data examining physical and transition risks are sparse but slowly 
expanding. Dietz, Bowen, Dixon, and Gradwell (2016) have estimated the value of global assets 
at risk (this is discussed further in Section 4). As for U.S.-specific analyses, Ceres recently 
published a report examining U.S. banks’ exposures to physical risk.40 They find that the annual 
climate VaR of major U.S. banks’ syndicated loan portfolios could be about 10 percent in the 
worst-case scenario, amounting to roughly $250 billion of a portfolio worth $2.2 trillion. Their 
analysis relies on RCP and Shared Socioeconomic Pathways (SSP) scenarios and they include 
costs of direct and indirect effects, using a CGE model to estimate indirect effects. Ceres also 
conducted a similar exercise to assess U.S. banks’ direct and indirect exposures to transition risk,41 
and applied climate VaR and stress test techniques. They find that over half of major U.S. banks’ 
syndicated loan portfolios are exposed, since many have clients in various sectors that are not 
aligned with the Paris Agreement. Thus, the overall assessments of financial stability risk linked 
to forward-looking physical and transition risks are likely medium (see Table 2). 

Modelling capabilities are also starting to expand amongst private and public providers. For 
example, MSCI offers clients portfolio-level climate VaR metrics42 and the NYU Stern Volatility 

 
39 Bank of America (2021). 
40 Ceres (2021). 
41 Ceres (2020). 
42 More information can be found on MSCI’s product website: 
https://www.msci.com/our-solutions/esg-investing/climate-solutions/climate-data-metrics  
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Laboratory has created an interactive risk estimation tool43 to quantify how climate may impact 
the performance of financial assets; within the tool, users can select different securities categories, 
time horizons, and performance metrics. Data in this space is also improving, as providers are 
beginning to consider how higher carbon intensities may affect the profitability of financial and 
non-financial firms. For example, S&P Trucost provides a “Carbon Earnings at Risk” dataset for 
users to analyze company-level exposure to future carbon pricing policies based on their current 
emissions.44  

Though there have not yet been natural capital analyses assessing U.S. physical risks, the Natural 
Capital Finance Alliance (NCFA) partnered with UBS, Citi, and others to launch the Exploring 
Natural Capital Opportunities, Risks and Exposure (ENCORE) tool45 in 2018, which has sector- 
and sub-industry- level assessments designed to help banks, investors, and insurance companies 
globally better understand their natural capital dependencies and potential impacts of its 
degradation. Additionally, the NCFA has conducted exploratory natural capital analysis case 
studies for banks located abroad.46 In the U.S., a hypothetical study could examine how poor air 
quality from more frequent and severe wildfires affects the profitability of businesses that rely on 
clean air. The study could also assess if effects are large enough to induce a business contraction 
or otherwise impact national macroeconomic statistics, a concern for financial institutions and 
central banks. 

Natural capital analysis is better suited for analyzing physical risk than transition risk since it 
focuses on how natural degradation from physical risks impacts business activity. It is less 
applicable for evaluating the impacts of climate-related policies, technologies, and preferences. 
Accordingly, there are no natural capital analyses examining the impacts of transition risk in the 
U.S.  

  

 
43 More information can be found on the NYU Stern Volatility and Risk Institute’s climate website: 
https://vlab.stern.nyu.edu/welcome/climate  
44 More information can be found on S&P’s product website: 
https://www.marketplace.spglobal.com/en/datasets/trucost-carbon-earnings-at-risk-(184) 
45 More information can be found on NCFA’s ENCORE website here: 
https://encore.naturalcapital.finance/en 
46 NCFA and PricewaterhouseCoopers (PwC). (2018).  
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3.9 Key Takeaways 
In Table 1, we summarize the results of the literature review on the ability of the methodologies 
described in the previous subsections to potentially address the challenges for modelling and 
assessing CRFSRs. The main conclusion is that no single methodology can address all challenges, 
which highlights the limitations of the methodologies considered and the need for further analysis. 

Table 1: Challenges of Quantifying U.S. CRFSRs 

 

Methodology 

Potential for addressing modeling challenges 

Uncertainty Long time 
Horizon 

Heterogeneities Technological 
Change 

Damage 
Function 

Integrated 
Assessment Models 

No Yes No Somewhat Somewhat 

Equilibrium Models 
(CGE & DSGE) 

Yes (DSGE) Yes Yes (CGE) Yes (DSGE) Yes 

Overlapping 
Generation Models 

Somewhat Yes Yes Somewhat Yes 

Statistical Methods Somewhat No Yes No No 

Input-output 
Models 

Somewhat No Yes No Yes 

Agent-based 
Models 

Somewhat Yes Yes Somewhat Yes 

Scenario Analysis, 
Stress Testing, 

Sensitivity Analysis 

Somewhat Yes Yes Somewhat Yes 

Other Practitioner 
Approaches 

Somewhat Somewhat Somewhat No Somewhat 

Uncertainty: There is a large degree of uncertainty about the magnitude and feedback mechanisms of the 
climate system, as well as how the system affects and interacts with economic and financial variables. Long 
time horizons: Climate change impacts are expected to manifest over longer time horizons. Heterogeneities: 
Financial markets and institutions are exposed to climate-related risks in different ways. Technological 
change: Understanding how innovation evolves is a crucial part of assessing CRFSRs. Damage functions: 
Damages, among other things, include effects on the labor market, capital stock, and natural capital. 
Yes/Somewhat/No refer to whether a methodology can potentially address the challenges in measuring 
CRFSRs. 
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In Table 2, we present whether a listed methodology is used to quantify U.S. CRFSRs in the extant 
literature, the corresponding assessment of the risk based on the literature we analyze, and the level 
of confidence on the assessed risk. Two main results emerge, represented in Table 2. First, there 
is little information available on U.S. CRFSRs. The number of “NA” (for “not applicable”) items 
in Table 1 indicates how little is known about the financial stability implications of climate-related 
risks for the U.S. Second, even what is known is characterized by a large degree of uncertainty, 
suggesting that results should be interpreted with caution. 

Table 2 
U.S. Financial Stability Implications of Climate-Related Risks: 

Vulnerabilities/Assessment/Uncertainty of the Assessment 
Model Type / Horizon / Backward-looking Horizon Forward-looking Horizon 

Risk Type Physical Risk Transition Risk Physical Risk Transition Risk 
Integrated  

Assessment Models 
NA NA NA NA 

Equilibrium Models NA NA NA 
Bank leverage/ 

Low vulnerability/ 
High uncertainty 

Overlapping Generation 
Models 

NA NA NA NA 

Statistical Methods 

Borrowing costs 
and direct and 
indirect losses/ 

Medium 
vulnerability/ 

High 
uncertainty 

Borrowing costs 
and direct and 
indirect losses/ 

Medium 
vulnerability/ 

High 
uncertainty 

Real estate 
prices/ 
High 

vulnerability/ 
High uncertainty 

Corp. debt and equity prices/ 
Medium vulnerability/ 

High uncertainty 

Input-output Models NA NA NA NA 
Agent-based Models NA NA NA NA 

Scenario Analysis, 
Stress Testing, 

Sensitivity Analysis 
NA NA 

Real estate 
prices/ 
High 

vulnerability/ 
High uncertainty 

Insurers’ and banks’ 
portfolios/ 

Medium vulnerability/  
High uncertainty 

Other Practitioner 
Approaches 

NA NA 

Banks’ 
syndicated loan 

portfolios/ 
Medium 

vulnerability/ 
High uncertainty 

Banks’ syndicated loan 
portfolios/ 

Medium vulnerability/ 
High uncertainty  

In each cell, we report vulnerability/assessment/uncertainty of the listed methodology used to quantify U.S. CRFSRs 
in the extant literature. “Vulnerability” lists the metric considered in the literature, such as bank leverage. 
“Assessment” summarizes the literature’s assessment of the risk as high, medium, or low. “Uncertainty” (high or 
low) surrounding the assessment is based on the number of studies available for the assessment, the modelling 
assumptions behind those studies, and the overall qualitative evaluation of the results. If there is no study in the 
extant literature employing the listed methodology to study U.S. CRFSRs, we report NA. 
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4. Financial Stability Applications 

4.1 Recommendations for Research on U.S. CRFSRs 
The previous section discusses the challenges in measuring climate-related risks and how different 
methodologies are able (or unable) to address them. This section presents our considerations, 
including some recommendations, for a possible way forward in assessing U.S. CRFSRs. 
Specifically, we highlight a subset of methodologies introduced in Section 3, which we gauge as 
more relevant to quantify the implications of climate-related risks for U.S. financial stability. 
Nevertheless, a key takeaway is that no single approach can accomplish this goal. Several 
methodologies must be combined to provide a clear understanding of the full financial implications 
of CRFSRs.  

The way forward necessarily entails combining agent-based models, general equilibrium models, 
and statistical methods. This effort will help shed light on vulnerabilities that may affect U.S. 
financial stability. Each methodology also needs to be further improved to overcome current 
limitations. As computational power and solution techniques evolve, researchers will be able to 
build and solve more comprehensive dynamic equilibrium models. As data quality and availability 
improve, statistical methods will be able to estimate new parameters and potentially unveil new 
correlations and heterogeneities. 

Another important consideration is that most methodologies assume stationarity of underlying 
dynamic processes or the existence of well-behaved statistical moments. Those assumptions may 
not be well suited to analyze the impact of climate change. New methodologies may need to be 
developed to address this issue. We leave this consideration to future research. 

4.1.1 Equilibrium Models 
The general equilibrium framework provides a useful benchmark for how the real sector is likely 
to change over time in response to changing prices.47 Two of the most popular general equilibrium 
models, CGE and DSGE, generate internally-consistent economic outcomes that incorporate the 
crucial role of prices and markets, based on the non-linear setup that closely resembles the real 
world more than other models: firms will engage in input substitution, households will move away 
from floodplains, and policymakers will respond by imposing taxes or providing subsidies. These 
new equilibrium outcomes will entail changes in the value of assets and the flow of financing, with 
implications for the stability of the financial system. 

In terms of empirical application, there is an important modeling tradeoff that distinguishes these 
two models. By sacrificing uncertainty, CGE models eliminate the accompanying computational 
challenges and become more amenable to higher degrees of cross-sectional heterogeneity. CGE 
models are hence useful in producing quantitative magnitudes of regional, national, and sectorial 

 
47 See, for example, Chen and Rose (2018), and Hazilla and Kopp (1990). 
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economic impacts arising from extreme weather events.48 Therefore, these models could be best 
used when addressing U.S. CRFSRs arising from physical risk. By contrast, the computational 
challenges of integrating uncertainty limit the DSGE models’ scope of disaggregation over sectors 
and jurisdictions and thus the heterogeneous exposures of economic agents and sectors. Instead, 
DSGE models allow for a clearer understanding of the channels of transmission between climate 
shocks and economic outcomes over time, under the assumption of various types of uncertainties 
including, in particular, policy uncertainty. Forward-looking analysis by DSGE models therefore 
allows a deeper focus on U.S. CRFSRs stemming from transition risk. 

While there is no prior work that explicitly incorporates the modeling of U.S. CRFSRs within a 
CGE framework, there are two promising possibilities. First, the existing CGE models of climate 
analysis and those of the banking or financial sectors (for instance, Diaz-Gimenez, Prescott, 
Fitzgerald, and Alvarez, 1992) could be combined to produce a CGE model that encompasses 
climate-related risks and the financial sector. Second, CGE models can help extend conventional 
macro-financial models to cover financial markets and institutions by integrating illustrative 
scenarios on the timing and magnitudes of economic impacts from climate-related transition and 
physical risks (see Network for Greening the Financial System, 2020). Adding climate scenarios 
to traditional macro-financial models, stress test models, scenario analysis, sensitivity analysis and 
other practitioner approaches could allow assessment of leverage and funding risk and other 
financial stability vulnerabilities.49 

One of the main outlets for DSGE has been policy analysis and forecasting by central banks in 
macro-financial and macroprudential analyses, with model expansions to encompass financial 
intermediation and to examine dynamic relationships and interactions between households, firms, 
financial institutions, and the government including the central bank.50 As such, similar to IAMs 
and CGEs, one possible approach to examine U.S. CRFSRs is to use DSGE models as an input to 
scenario analysis, stress testing, sensitivity analysis, and other practitioner approaches. 

A particularly promising possibility for DSGE lies in E-DSGE models that explicitly incorporate 
CRFSRs to examine transition risks, as seen in Carattini et al. (2021) in Section 3.2.2. 
Combinations of E-DSGE and financial linkages and intermediation might be able to address U.S. 
CRFSRs, which can in turn contribute to assessing a wide range of vulnerabilities that include 
asset valuation, leverage, funding risk, and interconnectedness. This latter characteristic highlights 
the ability of these models to capture indirect effects. 

 
48In the United States, there are several examples of CGE models for climate analysis. See, the Emissions 
Prediction and Policy Analysis (EPPA) by MIT, the G-Cubed model, the Global Trade Analysis Project 
(GTAP), and Intertemporal General Equilibrium Model (IGEM) – see Chen, Paltsev, Reilly, Morris and 
Babiker (2015); Corong, Hertel, McDougall, Tsigas, and van der Mensbrugghe (2017); Jorgenson, Goettle, 
Wilcoxen, Ho, Jin, and Schoennagel (2008); and McKibbin and Wilcoxen (1999). These models can 
incorporate rich datasets derived from National Income and Product Accounts (NIPA), input-output tables, 
and aggregate national employment of inputs (labor, capital, energy sources). 
49 One recent example is a work by the Bank of Canada where a CGE model was used to produce illustrative 
scenarios on the timing and magnitudes of economic impacts from climate-related transition and physical 
risks – see Ens and Johnston (2020).  
50 See IMF (2021), and Lipinsky and Miescu (2019). 
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4.1.2 Statistical Methods 
Statistical methods are well-suited to quantify parameters of models that can be used to assess U.S. 
CRFSRs. Building on the evidence from past extreme weather events, statistical methods can 
capture the direct effects of climate change. These methods can also be used to estimate the direct 
effects of transition risk. These methodologies allow a precise estimation of a well-defined 
correlation, holding other quantities and prices constant. For example, statistical methods are well-
suited to measure the losses incurred by banks exposed, through their residential mortgage 
business, to communities hit by a flood. As per the indirect effects, statistical methods can be used 
to analyze changes in liquidity and in credit provision by financial institutions following extreme 
weather events. 

These methodologies are particularly important because they complement general equilibrium 
frameworks in two ways. First, they allow researchers to quantify parameters used in CGE, DSGE, 
and agent-based models. Second, they discipline models by documenting correlations that these 
models need to generate. In sum, statistical methods are a promising tool to assess climate change-
related financial stability risk in the U.S., especially as part of a comprehensive toolkit of models. 

One important caveat to the use of statistical methods is the need for detailed and granular data. 
The application of these approaches often requires access to confidential information, which is 
difficult to aggregate given the fragmented U.S. regulatory landscape. The lack of consistent, 
comprehensive datasets poses an additional challenge when using statistical methods. 

4.1.3 ABMs 
ABM models are theoretically well-suited to capture both direct and indirect financial stability 
risks on the financial sector and real economy. Since ABMs are agent-level, results can be highly 
granular and aggregated as needed. This granularity allows modelers to simulate financial market 
structures closely, by programming agents to operate in networks and interact with each other. 
These agent-level specifications and interactions can help identify which agents are more 
vulnerable to climate-related risks (e.g., low- and moderate-income communities), how 
significantly agents are exposed, what risk amplification mechanisms exist, and to what extent 
some agents can offset risks that other agents face. For instance, a modeler could measure how a 
sudden carbon tax policy may lead to defaults among agents with carbon-intensive assets and 
estimate the effects on other agents exposed to those defaulting. ABMs can capture fire sales and 
sudden asset value depreciations, which may affect the financial positions of agents holding 
overlapping portfolios as well as the financial stability of the system.  

Botte, Ciarli, Foxon, Jackson, Jackson, and Valente (2021) construct an agent-based, stock-flow-
consistent model (TRansit) and consider a reference scenario and a “fast transition” scenario, in 
which an economy transitions to net-zero in about six and a half years. They study the impacts of 
the transition on banks, households, government, and firms, and consider economic, social, and 
financial stability impacts. They find that the government in particular plays an important 
stabilizing role during a transition. While ABM models have theoretical advantages in integrating 
a financial sector, most climate models are still at a proof-of-concept level and we are not aware 
of any ABM models on U.S. CRFSRs. 
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4.1.4 Scenario Analysis, Stress Testing, Sensitivity Analysis 
These methodologies can be applied by firms or by regulators. We focus on the latter, since it is 
more useful in assessing U.S. CRFSRs.51 

Supervisory authorities may use these methodologies to conduct microprudential and 
macroprudential assessments to better understand the effects of CRFSRs. From a macroprudential 
perspective, regulators can use these methods to analyze the resilience (or lack thereof) of the 
financial system through direct and indirect financial stability effects. From a microprudential 
perspective, these methodologies can shed light on which institutions in the system are more 
vulnerable. Some central banks are in early stages of using these methodologies to analyze the 
impacts of climate-related risks. 

The European Central Bank (ECB) and European Systemic Risk Board (ESRB) used long-term 
scenario analysis to identify climate-related financial stability vulnerabilities and physical and 
transition risks at the country, sector, and firm level in the European Union. The findings show 
uneven and significant impacts of climate-related risks for the European financial sector if 
mitigation efforts are insufficient or ineffective, highlighting the need for robust climate policies 
and smooth net-zero transitions. The report identifies potential amplification channels, such as fire 
sales, and includes a box outlining how climate-related risks may be amplified in an interconnected 
financial system, but it does not explicitly account for these indirect effects and thus notes that 
estimates likely represent the lower-bound. 

In September 2021, the ECB released the results of its economy-wide climate stress test. The 
exercise assesses the resilience of over four million non-financial corporates and 1,600 Euro Area 
banks to both physical and transition risks under three different NGFS scenarios in a 30-year 
forecast period. To conduct this analysis, the ECB constructed an extensive dataset by merging 
firm-level financial data, firms’ climate-related risk data, including physical risk scores and carbon 
emissions data, and data on Euro Area banks’ exposures to these firms through loan and corporate 
bond holdings. These granular data allowed the ECB to map physical and transition risks at the 
sector, bank, and country level and compute firms’ and banks’ loan portfolio default 
probabilities.52 The key takeaways are 1) early adaptation costs are significantly lower than the 
medium- and long-term costs of inaction, 2) physical risks increase non-linearly over time and are 
expected to become very significant, and 3) costs stemming from climate-related risks are 
moderate for the average firm and bank. However, if climate change is not mitigated, large and 
significant institutions, select geographic locations (such as southern Europe), and certain 
industries would bear significant costs, possibly leading to systemic events. The results and 
methodology will inform the ECB’s 2022 supervisory climate stress tests for banks. 

 
51 These methodologies are useful for financial institutions to assess which assets are more vulnerable to 
physical and transition risks and to better understand their operational resilience. Overall, however, they do 
not provide assessments of U.S. CRFSRs since they tend to only examine portfolio-level effects.  
52 Firm-level probabilities of default (PDs) are translated to banks’ loan book PDs by using the exposure-
weighted average of corporate-level PDs.  
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In 2018, the De Nederlandsche Bank (DNB) conducted an energy transition risk stress test on the 
Netherlands’ financial system. Recognizing that alignment with the Paris Agreement would 
require a significant emissions reduction, the DNB conducted this stress test to better understand 
potential financial stability implications of a disorderly transition. They use four severe but 
possible energy transition scenarios in a five-year forecast period to ensure financial institutions 
have relevant, short- to medium-term stress test results. In this analysis, the DNB used detailed 
securities holdings data to determine most of the equity and bond exposures of banks, insurers, 
and pension funds. Key conclusions are: 1) individual institutions may face sizeable, but 
manageable, risks, 2) policymakers can mitigate losses by introducing timely and effective climate 
policies, and 3) individual institutions that integrate transition risks in their frameworks can 
mitigate potential portfolio risks. Finally, they note that stress tests are especially helpful for 
understanding climate-related risks given high levels of uncertainty. 

In June 2021, the Bank of England (BoE) launched its climate stress test exercise to assess the 
risks that climate change poses to the largest United Kingdom (U.K.) banks and insurers.53 They 
are looking to understand specific business model constraints that institutions may face, improve 
risk management and strategic reviews, and quantify financial exposures based on end-2020 
balance sheets. The BoE expects to publish their results in May 2022.  

In France, the Autorité de Contrôle Prudentiel et de Résolution (ACPR) and the Banque de France 
(BdF) published the results of their 2020 pilot climate stress test.54 The French regulators assessed 
the implications of physical and transition risks on credit risk, market risk, and sovereign risk for 
nine banks and 15 insurance institutions using NGFS scenarios. The exercise introduced important 
methodological innovations, such as dynamic balance sheet assumptions and investment in and 
out of sectors based on climate-related risk-reward considerations by financial institutions. The 
results show an overall moderate exposure of French banks and insurers to climate-related risks.  

While these methodologies are highly applicable, there are limitations in their capabilities to assess 
U.S. CRFSRs. First, these methodologies may not fully capture second-round effects or financial 
system interconnectedness. In Section 4.2, we suggest one approach for potentially overcoming 
this limitation. Second, though not unique to these methodologies, detailed financial and climate 
data are lacking. For example, it is challenging to aggregate institution-level data on firms’ Scope 
1, 2, and 3 emissions55 in a straightforward way since data collection is often sparse and 
incomplete. Standardizing global climate disclosures may help address some of these data 
challenges. 

 
53 Bank of England. (2019). 
54 ACPR and BdF (2021). 
55 More information on how Scope 1, 2, and 3 emissions are defined can be found here: 
https://www.epa.gov/greeningepa/greenhouse-gases-epa  
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4.1.5 Other Practitioner Approaches56 
Climate VaR assessments have been applied to measure financial stability risk at the global level. 
Dietz et al. (2016) find the expected climate VaR of global financial assets to be 1.8 percent (about 
$2.5 trillion) along a business-as-usual emissions pathway, with most risk concentrated in the tail; 
the 99th percentile climate VaR is 16.9 percent (about $24.2 trillion). Under a no-more-than-2-
degree-warming emissions pathway, the authors find that the climate VaR reduces by 0.6 
percentage points (pp) and the 99th percentile reduces by 7.7 pp. In that pathway, after accounting 
for mitigation costs, the present value of global financial assets is expected to be 0.2 percent higher 
and the 99th percentile is 9.1 percent higher than the business-as-usual emissions pathway.  

The Carbon Disclosure Project also tabulates similar measures and reports57 that 215 of the world’s 
largest companies with a market capitalization of $17 trillion expect $1 trillion to be at risk from 
climate change, with many of those losses expected to be realized within the next five years. In 
general, climate VaR analysis is conducted at a portfolio-level for individual institutions, meaning 
that it often only captures direct risks to portfolio valuations and cash flows without considering 
broader systemic effects.  

Natural capital analysis is generally conducted at the firm-level to help institutions identify their 
natural resource dependencies and assess impacts of its potential degradation. This exercise is 
valuable for institutions to identify their vulnerabilities, which may eventually help mitigate 
systemic losses and financial instabilities. For example, the NCFA performed a natural capital 
analysis on five participating banks in Colombia, Peru, and South Africa, focusing on the impacts 
of natural capital damages such as habitat degradation, ocean pollution, and water stress on banks’ 
portfolios, both qualitatively and quantitatively.58 Natural capital analyses hold promise for 
measuring U.S. CRFSRs if conducted in an aggregated manner for financial institutions. As an 
example, Calice, Diaz Kalan and Miguel (2021) find that Brazilian banks are materially exposed 
to biodiversity loss through their domestic non-financial corporate loan portfolios59 and highlight 
this as a financial risk for those banks, as well as the Banco Central do Brasil. Broadly, interest in 
the links between biodiversity losses and financial stability risks is growing, with opportunities for 
further research. 60  

4.2 Key Takeaway  
A key takeaway is that no methodology can be used in isolation to assess the financial stability 
implications of climate change; several methodologies need to be combined for a more complete 

 
56 Climate risk scores and ratings are produced by a variety of firms using differing and opaque 
methodologies. This makes it challenging to compare and interpret scores. This is a major shortcoming and 
must be taken into account when using them to identify and evaluate U.S. CRFSRs. Therefore, we 
concentrate only on VaR and natural capital analyses in this section. 
57 Carbon Disclosure Project (2019).  
58 NCFA and PwC (2018).  
59 They find that forty six percent of Brazilian banks’ corporate loan portfolio and twenty percent of their 
total credit portfolio are concentrated in sectors that are very dependent on one or more ecosystem services.  
60 The NGFS recently formed a group to study these links and share insights with the larger research 
community. See NGFS (2021). 
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understanding of U.S. CRFSRs. For example, the reduced form outputs from micro- and macro-
econometric statistical methods can be used to inform the main parameters and assumptions in 
CGEs, DSGEs, and ABMs, as well as the distributions of different random variables in ABMs. 
They can also be used to design the scenarios that feed into stress testing, sensitivity analysis, and 
other practitioner approaches. Similarly, outputs from CGEs, and DSGEs can be used to inform 
pathways used in scenario analysis, stress testing, sensitivity analysis, and other practitioner 
approaches. These connections between the inputs and outputs of these different methodologies 
highlight their complementary nature and emphasize the benefits of applying multiple 
methodologies to assess the financial stability implications of climate change, as each one adds 
further depth to the analysis. Importantly, there is an information feedback loop: results along the 
methodology chain refine and improve the inputs and results of different methodologies—see 
Figure 2. 

Figure 2 
Methodology Chain 

 

 
Reduced form outputs from micro- and macro-econometric statistical methods can inform the main 
parameters, fundamental assumptions, and probability distributions of key random variables in CGE, 
DSGE, ABMs, and VaRs. This information could be useful for designing and conducting scenario 
analysis, sensitivity analysis, and stress tests. Methodologies are linked in a feedback loop where results 
along the methodology chain refine and improve the inputs and outputs of different methodologies. 

 

5. Conclusions 
A key message of this paper is that we are closer to the beginning than the end of integrating 
climate-related risks and financial system vulnerabilities in modelling. Anticipating the effects of 
climate-related risks requires accounting for fundamental uncertainty, complexity, and deviations 



 

Page 35 of 46 
 

from standard assumptions. Moreover, the direct and indirect effects of the transition to a low-
carbon economy are substantially different from the direct and indirect effects of physical risks. 
An important role of the financial sector is to efficiently allocate capital. A potentially disorderly 
reallocation from a non-green to a green economy might, in turn, weaken the balance sheet of 
financial institutions with potentially large economic and financial effects. Tracing these effects 
through the economy and financial system in a way that allows for aggregation and assessment of 
systemic failures is difficult, and the challenge is compounded by a lack of granular and consistent 
data, agreement on asset classifications (e.g., what it means to be a “green” or “non-green” asset), 
and cross-jurisdictional transparency. 

These concerns might be sidestepped by taking a macroprudential approach that looks at the upper 
envelope of climate losses to be absorbed by the financial system. Indeed, most of the models 
described here focus on the extent of economic harms under different climate scenarios. IAMs 
provide a shorthand approach for connecting climate harms to economic damages. CGE and DSGE 
models add richness to this exercise, in some cases directly introducing a financial sector. 
However, the standard assumptions used to make agent behavior tractable may be ill-suited to 
assessing climate change-related financial system vulnerabilities. Empirical studies have shown a 
significant indifference to climate-related risks on the part of coastal homeowners, for example.61 
Moreover, incentives may differ so widely across a given class of agents that the representative 
agent assumption adopted by many methodologies is particularly strained. Perhaps most difficult 
to address is the incompatibility between a traditional normal distribution of outcomes with known 
statistical moments and the skewed distribution of climate-related risks with uncertain statistical 
moments. Most of the behavioral frameworks for rational risk management assume the former, 
and the macro-empirical work on climate risks is difficult to interpret outside of the assumption of 
stationarity implied by a normal distribution of outcomes. ABMs offer the potential to relax these 
assumptions and the computational power needed to implement ABMs is increasingly within 
reach. While some models are beginning to apply more realistic assumptions and distributions, 
there is a large gulf between the promise and the current state of these models. 

Sizing the total amount of harm is surely informative about the load-bearing capacity of the 
financial system. However, financial crises are just as apt to emerge from an untenable distribution 
of these losses across financial sectors and institutions. For the U.S., there is very little work on 
the systemwide distribution of climate-related risks across counterparties, although the importance 
of the insurance sector for banking sector vulnerability to physical risks is well known. VaR 
models, scenario analysis, and stress testing represent a micro-level approach to complement the 
macro-level approach of the general equilibrium models. In general, the ability of a micro-level 
approach to address counterparty risk has yet to be realized, again due to lack of disclosures and 
adequate data. Moreover, climate-related risk metrics that would apply to financial institutions, 
especially non-banks, are non-existent. This leaves macroprudential climate analysis a wide-open 
topic for interested researchers.  

 
61 See Bernstein, Gustafson, and Lewis (2019), Filippova, Nguyen, Noy, and Rehm (2020), and Hino and 
Burke (2020), amongst others. 
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6. Appendices 

6.1 Data Requirements 
We outline data requirements for each of the methodologies described in Section 3. It should be 
noted, however, that these assessments are incomplete, and the full scope of climate data gaps and 
challenges are outside of the scope of this paper. The NGFS Workstream “Bridging the Data 
Gaps”62 provides more information on this topic, in addition to initiatives led by the Basel 
Committee on Banking Supervision and the Financial Stability Board. 

IAM: Detailed climate and economic data are required to construct the interlinked modules that 
comprise IAMs. Climate data needs often include projections for geophysical factors, such as 
global mean temperatures and solar radiation, as well as possible pathways for greenhouse gas 
emissions, energy and land use, technological advancements, and social and governance changes. 
These are in addition to economic data needed for large-scale, economy-wide cost-benefit and 
cost-effectiveness analyses, such as the projected pathways of macroeconomic indicators. 

CGE: Data needed for model calibration include Social Accounting Matrices (SAMs), which are 
derived from National Income and Product Accounts (NIPA); input-output tables; quantities and 
prices of inputs such as labor, capital, and energy sources; and financial variables. Data gaps exist 
in calibrating key supply and demand parameters, including the elasticity of substitution and 
production cost functions, often resulting in an ad-hoc selection of values based on best judgment. 
This may lead to uncertainty in the accuracy of the new equilibrium under perturbation of climate-
related parameters. 

DSGE: Studies using DSGE models both calibrate – using commonly adopted values in the 
literature, surveys, or meta-studies – and estimate structural parameters using historical data. Data 
requirements are similar to CGEs, and as with CGEs, data gaps are particularly severe in 
determining certain parameters, including substitutability and discount rates. Thus, results may be 
sensitive to assumptions for these parameters.  

OLG: OLG models are primarily theoretical and do not require much data. 

Statistical Methods: Statistical methods require detailed and granular data. In particular, the 
analysis of the effects of extreme climate events on financial institutions requires (i) loan-level 
data at a monthly or quarterly frequency for various asset classes such as corporate credit to firms 
and commercial and residential mortgages, among others, and (ii) security-level holdings data. 
These data sets are commercially available for a subset of non-bank financial institutions and 
collected, for banks only, by the Federal Reserve to assess bank capital adequacy and to support 
stress testing. However, the Federal Reserve collects this data only for very large banks. Hence, 
there is a considerable data gap for smaller banks and other types of financial institutions such as 
insurance companies, pension funds, and investment managers. 

IO: The application of IO models to assess the U.S. CRFSRs requires at least three sets of industry-
level data: (i) the domestic supply and use of commodities, (ii) environmental data on resource 

 
62 See NGFS (2021) and more information can be found here: 
https://www.ngfs.net/en/about-us/governance/workstream-bridging-data-gaps 
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use, and (iii) financial data, such as U.S. banks and/or non-bank financials exposures by industry. 
Additionally, as climate-related risks can affect U.S. financial institutions through both their 
domestic and foreign exposures, linkages with the foreign industries might need to be considered.  

ABM: These models require detailed data to develop agents’ behavioral rules, program networks, 
and capture agent-interaction effects, reflecting the computationally intensive nature of this 
methodology. Information about agents (firms, households, businesses, government, etc.), their 
relationships to each other, and the environment they operate in are required. It is up to the modeler 
to determine how granular these data on agents and their environment should be, but the level of 
specification of input data will determine the level of detail of output data.  

Scenario analysis, stress testing, sensitivity analysis: Since these methods are often applied at 
the asset- and portfolio-level and require that level of granularity for an institution- or system-level 
assessment, they require detailed climate, economic, and financial data. Data requirements can 
include geolocations of assets and operations at a granular level, as the same region may face 
different levels of risks (if there are, for example, vulnerable coastal locations near less exposed 
mountainous regions). Additional data requirements include credit ratings, asset valuations, 
portfolio exposures, firms’ Scope 1, 2, and 3 emissions, supply chain pathways and dependencies, 
and projected climate and macroeconomic pathways. More broadly, consistent climate data 
disclosures from financial institutions would be necessary for conducting standardized risk 
assessments at a system-level.  

Other Practitioner Approaches 
Climate risk scores and ratings: These metrics are primarily created by private data providers that 
do not disclose their methodologies. Without source methodologies, it is difficult to pinpoint exact 
data items used to develop these scores and ratings. Nonetheless, since these metrics are generally 
conducted at the asset, portfolio, and institution level to assess climate-related risks, they are likely 
to require granular balance sheet data, geolocations of assets and operations, and information on 
firms’ Scope 1, 2, and 3 emissions, in combination with data describing future climate and 
economic pathways, often derived from scenarios.  

Natural Capital Analysis: Instead of requiring firm-level balance sheet and operational data to 
measure institutions’ effects with respect to nature and the climate, this type of risk assessment 
requires data on a firm’s natural capital dependencies to assess balance sheet and operational 
impacts. Thus, practitioners will need to identify an institution’s natural capital dependencies and 
use projected climate pathways data to identify when and the extent to which physical risks may 
degrade those dependencies. Finally, they will need to integrate this information with data on 
institutions’ operations, supply chain pathways, and balance sheets to assess impacts of natural 
capital degradation on firms’ financial and operational health.  

VaR: This methodology requires detailed, firm-level balance sheet data to measure what 
percentage of a portfolio may devalue due to climate-related risks under different scenarios. These 
scenarios apply detailed projected climate pathways data to simulate financial impacts under 
different climate outcomes. For a system-level analysis, individual institutions’ balance sheet data 
can be aggregated to shed light on the magnitude of U.S. CRFSRs. 
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6.2 Methodologies Comparison 
Comparing methodologies across different dimensions 

 
Methodology 

 

 
Strengths 

 

 
Weaknesses 

Time 
Horizon 

Applicability 
versus 

Complexity 

Key 
assumptions 

Applicability to 
modelling U.S. 

CRFSRs 
Integrated 
Assessment 
Models (IAM) 

Integrates climate 
and economic 
projections 
 
Projections are 
internally consistent 
 
Allows for cost-
benefit analysis of 
climate mitigation 

Most IAMs do not model 
money, finance, or 
banking 
 
Highly aggregated 
 
Typically relies on a 
smooth scalar damage 
function of chronic 
physical risk 
 
Lacks resiliency to 
imperfect information and 
unforeseen endogenous 
events, such as technology 
or policy change 
 
Black box effect 

Short to 
long term 

Highly 
applicable 

Highly 
aggregated, 
general 
equilibrium 
theory, 
simplified 
climate models 

Useful for 
generating 
scenarios for 
other 
methodologies 

Computable 
General 
Equilibrium 
(CGE) Models 

Quantifies general 
equilibrium effects 
by accounting for 
interlinkages across 
many economic 
sectors and agents 
 
Can be flexibly 
adjusted to multi-
sector, multi-
country or global 
set-ups 

Strong assumptions 
including perfect 
information 
 
The “black box” aspect 
 

Short to 
long term 

Somewhat 
applicable 

Perfect 
information, 
exogenous 
technology, no 
adjustment 
costs in 
production, and 
inelastic supply 
of labor  

Economic 
outcomes from 
the model can be 
fed into a macro-
financial analysis 
to assess CRFSRs 

Dynamic 
Stochastic 
General 
Equilibrium 
(DSGE) 
Models 

Incorporates 
uncertainty in agent-
decision making and 
endogenous changes 
in innovation 
technology 
 
In extensive use by 
central banks for 
policy analysis 
 

Trade-off of 
computational intensity 
and the degree of details 
that the model can handle 
 
Assumption of rational 
expectations 
 

Short to 
long term 

Somewhat 
applicable, 
with certain 
limits on 
model size 

Rational 
expectations 

Highly 
applicable. It can 
be combined with 
other 
methodologies 

Overlapping 
Generation 
Models 

Highlights 
intergenerational 
redistribution 
 
Incorporates life-
cycle investment 
decisions 

Closed economy model 
 
Does not consider 
endogenous systemic risks 
(climate change or 
transition) 

Long term Complex 
 
Marginally 
applicable  

Usually assume 
perfect 
foresight about 
future prices 
and  

Could be useful 
for studying asset 
price implications 
and policy 
conflicts across 
generations 

Statistical 
Methods 

Intuitive and 
relatively easy to 
estimate and 
interpret 
 

Rely on partial 
equilibrium view of the 
world  
 
Mostly focused on past 
data and, thus, inherently 
backward looking 

Short to 
long term 

Highly 
applicable  

These methods 
tend to ignore 
equilibrium 
considerations 

Highly 
applicable. It can 
be combined with 
other 
methodologies 
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Input-output 
Models 

Details 
environmental 
impacts at an 
industry level 
 
Can capture impacts 
of demand for 
goods and services 
on energy and 
resources 
 
Computationally 
simple and requires 
less assumptions 

Cannot capture big 
technological advances as 
they are based on 
historical input-output 
tables 
Mainly focus on supply 
chain disruptions 
 
Requires industry level 
environmental and 
linkages data 

Short to 
medium 
term 

Highly 
applicable 

Assumes that 
the history is a 
good 
representative 
of future trends  

Marginally 
applicable. It can 
be combined with 
other 
methodologies 

Agent-based 
Models 

Captures 
interactions and 
feedback 
mechanisms 
between agents and 
the financial and 
real economy 
 
Incorporates 
heterogenous agent 
assumptions 
 
Accommodates 
network effects 

 
Requires detailed data to 
build agents’ behavioral 
rules 
 
Agents’ behavior may not 
be rational and 
representative 

Short to 
long term 

Complex Rational 
expectations 
and perfect 
information 
 
 

Highly 
applicable. It 
accounts of 
network effects 
and risk 
amplification 
mechanisms 

Scenario 
Analysis, 
Stress Testing, 
Sensitivity 
Analysis  

Examines multiple 
future pathways and 
outcomes 
 
Helpful for risk 
management and 
strategic decision-
making 
 
Applicable to many 
stakeholders 
 
Does not require 
extensive modelling 
capacity  

Limited climate and 
financial data available 
 
Can be challenging to 
translate longer-term 
results into meaningful 
action 

Short to 
long term 

Highly 
applicable 

Detailed 
financial and 
climate data 

Forward-looking 
nature helpful for 
risk management 
and quantification 
 
Can conduct 
microprudential 
and 
macroprudential 
assessments  

Other 
Practitioner 
Approaches: 
climate risk 
scores and 
ratings, climate 
VaR, natural 
capital analysis 

Simpler than 
traditional 
modelling methods 
 
Applicable to many 
stakeholders 
 
 

Scores and ratings have 
different methodologies, 
making comparison and 
interpretation difficult  
 
Most risk for climate 
VaRs is concentrated in 
the tail; may inadvertently 
enable myopia 

Short to 
long term 

Highly 
applicable 

Detailed 
financial and 
climate data 

Climate VaR 
helpful for 
quantifying 
extent of systemic 
exposure  
 
Natural capital 
analysis is 
somewhat 
applicable for risk 
management  
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